

If Chained Implications in Properties

Weren’t So Hard, They’d be Easy

Don Mills

don.mills@microchip.com

mills@lcdm-eng.com

Microchip Technology Inc.

Chandler, AZ, USA

www.microchip.com

ABSTRACT

The use of implication operators in concurrent assertion properties is critical to masking false

negatives during verification. However, many designers shy away from using multiple

implications within the same property because they are difficult to understand and maintain.

This paper will dissect a two-level chained implication in which the first level consequent second

level antecedent contains an eventuality condition (an unbounded range). Analysis will consider

numerous scenarios and what-if’s regarding why and how this property works the way it does.

mailto:don.mills@microchip.com
mailto:mills@lcdm-eng.com

SNUG 2009 2 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

Table of Contents

INTRODUCTION... 4

WHAT AND WHY OF SYSTEMVERILOG ASSERTIONS .. 4

IMMEDIATE ASSERTION .. 4

CONCURRENT ASSERTIONS .. 5

Property and Sequence Blocks ... 6

Implication Operator ... 7

Range Repetition vs. Cycle Delay Range .. 11

ANALYSIS OF A COMPLEX PROPERTY ... 13

SIMPLE TEST TO THE COMPLEX PROPERTY .. 15

CORRECT WAY TO MODEL THE COMPLEX PROPERTY USING FIRST_MATCH 16

ALTERNATE WAY OF MODELING THE COMPLEX PROPERTY USING ##0 17

THE SECOND IMPLICATION REPLACED BY ##0 ... 18

TWO PROPERTIES ... 19

USE AN UPPER RANGE BOUND.. 20

ALLOW ONLY THE FIRST ANTECEDENT TO BE VACUOUS ... 22

CONCLUSIONS ... 23

REFERENCES .. 24

ABOUT THE AUTHOR .. 24

Table of Figures

Figure 1 – Sequence and Property Pass/Fail for the Thread Starting at cycle 1 Inclusive

Example 4. .. 7

Figure 2 – Sequence and Property Pass/Fail for all the Threads Between Cycle 0 and Cycle

10 for Example 4. ... 8

Figure 3 – Property Pass/Fail for all the Threads Between Cycle 0 and Cycle 10 for

Example 6. Vacuous Successes are not Noted. ... 9

Figure 4 – Sequence bus_req and Property bus_req_prop7 Pass/Fail Results for

Example 7 ... 10

Figure 5 – Sequence bus_req and Property bus_req_prop7 Pass/Fail Results for

Example 7 ... 10

Figure 6 – Sequence and Property Pass/Fail results for Example 8....................................... 11

Figure 7 – Sequence and Property Pass/Fail Results for Example 9. 12

Figure 8 – Sequence and Property Pass/Fail Results for Example 9. 13

Figure 9 – Chained Implication Labels ... 14

Figure 10 – Failing Test for Chained Implications. ... 15

Figure 11 – Passing Test? For Chained Implications. ... 15

Figure 12 – Neither Passing or Failing Test for Chained Implications. 16

Figure 13 – Real Passing Test for Chained Implications Using first_match 17

SNUG 2009 3 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

Figure 14 – Fusion Operator Replacing the First Implication Operator 18

Figure 15 – Fusion Operator Replaces Second Implication Operator 18

Figure 16 – Fusion Operator Replaces the Second Implication Operator 19

Figure 17 – Bounded Range With and Without a first_match ... 20

Figure 18 – Variable Upper Range Bound ... 22

List of Examples

Example 1 – Self Contained Concurrent Assertion Directive .. 5

Example 2 – Concurrent Assertion Calling a Property Block .. 6

Example 3 – Assertion, Property and Sequence Blocks Used Together 6

Example 4 – Sequence with Multiple Endpoints True .. 7

Example 5 – Property Showing the Antecedent and Consequent of an Implication 8

Example 6 – Range in Consequent – Automatic First-Match is Applied 9

Example 7 – Sequence with Multiple Endpoints used in Antecedent 9

Example 8 – Antecedent Sequence with first_match Applied to Possible Multiple Endpoints

.. 11

Example 9 – Sequence with Multiple Endpoints in Antecedent ... 12

Example 10 – Clock Cycle Counter and Max Count Comparator .. 14

Example 11 – Chained implication with a unbounded repetition range in an antecedent .. 14

Example 12 – Chained Implication Using first_match on an Unbounded Repetition Range

in Antecedent .. 16

Example 13 – Replace First Implication With Fusion ... 17

Example 14 – Replace Second Implication with Fusion .. 18

Example 15 – Chained Implication with first_match vs. Fusion Replacing the Second

Implication .. 19

Example 16 – Chained Implication with Bounded Repetition Range in Antecedent 20

Example 17 – Variable Used to Set the Upper Range Bound ... 21

Example 18 – Variable Used to Set Upper Range Bound, Only Test When Upper Bound is

Reached ... 22

Example 19 – Chained Implication Where Only First Antecedent Can be Vacuously True

.. 23

SNUG 2009 4 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

1 Introduction

Assertions have become a key component in both the design and verification phases of a

project. Liberal use and accurate modelling of assertions, which includes properties and

sequences, provide continuous visibility to a design during verification. In addition to visibility,

concurrent assertions are very useful for monitoring interaction and protocol between signals in

the design.

Another feature of assertions is that they can very precisely describe the intent of a design.

Assertions can be used as a “second source” for design verification since the nomenclature used

to describe assertions is significantly different from the standard RTL/synthesizable modelling.

Finally, with a significant scattering of assertions throughout a design, a formal tool can make

use of these assertions to analyze and compare the design described by the assertions to the RTL

model of the design.

The syntax and modelling for assertions can be considered very cryptic. This is, of course, the

reason why assertions are so concise. However, with this cryptic, concise syntax comes a

learning curve that can be difficult to climb. Then once understood, the syntax is difficult to

maintain or remember if it is not used regularly.

This paper will begin by giving a brief definition of the key components of assertions and

some basic uses for assertions. The paper does expect that the audience has a basic

understanding of SystemVerilog Assertions. A more complex model will then be introduced and

this model will be the basis for the remainder of the paper. Variations of this complex model

will be discussed, analyzed, and compared to the original, as a means of understanding the

details of how the original model works.

2 What and Why of SystemVerilog Assertions

SystemVerilog has two types of assertions: immediate assertions and concurrent assertions.

Both types of assertions are used to perform tests on a design whenever the assertion is called or

executed. When an assertion test is completed, a pass or fail statement from the assertion can be

executed. Assertions provide a mechanism for continuous monitoring of signals and conditions

across all simulations.

2.1 Immediate Assertion

Immediate assertions execute in zero simulation time, i.e., they execute immediately. An

immediate assertion is a procedural statement, and therefore can be placed anywhere a

procedural statement can be placed: within always blocks, initial blocks, tasks, and functions.

Immediate assertions are very similar to if/else statements in that they can have both pass and fail

procedural statements. However they differ from if/else statements in many ways including:

1. Assertions are ignored by synthesis.

SNUG 2009 5 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

2. Assertion execution can be disabled and enabled during simulation.

3. Assertions are intended for monitoring a design rather than modeling a design.

4. Assertions execute severity level tasks if the assertion fails.

The syntax for an immediate assertion is:

assert (expression) [pass_statement;] [else fail_statement;]

Note that the pass_statement and the else fail_statement are optional. If the

fail_statement is left off, the default severity level of $error will execute.

For examples and details on using immediate assertions to trap logic X and Z problems, refer

to the paper “Being Assertive With Your X” [4], published in the proceedings of SNUG 2004.

2.2 Concurrent Assertions

Concurrent assertions use a clock or some other repetitive signal (referred to hereafter as the

property clock) to trigger the assertion evaluation. The primary difference between immediate

and concurrent assertions is that concurrent assertions evaluate conditions over time, whereas

immediate assertions test at the point in time when the assertion is called. The syntax difference

between the two types of assertions is very slight. The concurrent assertion directive includes

the key word property, whereas the immediate assertion does not. The syntax for a concurrent

assertion directive is:

assert property (property_expr) [pass_statement;] [else fail_statement;]

The argument to assert property is a property expression which differs from the

argument of an immediate assertion, which is a simple Boolean expression. A property

expression is comprised of a clock specification and a sequence of Boolean expressions tested

over time. The expressions are evaluated on the clock edge specified. The sequence of Boolean

expressions can be spread over multiple clock cycles by using the ## cycle delay operator

between each expression.

The following code is an example of a completely self-contained concurrent assertion

directive.

example_1:assert property

 (@(posedge clk) (req ##1 grant ##10 !req ##1 !grant))

 else $error("bus request failed");

Example 1 – Self Contained Concurrent Assertion Directive

The sequence in the example above is read as: “req should be true (high) immediately,

followed by grant being true (high) one clock cycle later. After ten more clock cycles, req should

be false (low), followed by grant being false (low) one clock cycle later.” For this assertion to

succeed, each expression must evaluate true at its specified time.

SNUG 2009 6 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

2.2.1 Property and Sequence Blocks

The property expression of a concurrent assertion can be defined in a separate block of code,

between the keywords property and endproperty. This enables the same property expression to

be re-used by multiple concurrent assertions.

property bus_req_prop2;

 @(posedge clk) req ##1 grant ##10 !req ##1 !grant;

endproperty:bus_req_prop2

example_2:assert property (bus_req_prop2)

 else $error("bus request failed");

Example 2 – Concurrent Assertion Calling a Property Block

A complex property expression can be broken into smaller sequence building blocks, specified

between sequence and endsequence. This is illustrated in the following example.

sequence start_bus_req;

 req ##1 grant;

endsequence:start_bus_req

sequence end_bus_req;

 !req ##1 !grant;

endsequence:end_bus_req

property bus_req_prop3;

 @(posedge clk) start_bus_req ##10 end_bus_req;

endproperty:bus_req_prop3

example_3: assert property (bus_req_prop3);

Example 3 – Assertion, Property and Sequence Blocks Used Together

One difference between a property and a sequence is that property expressions contain an

implicit first-match whereas a sequence does not. This means that if a sequence has multiple

pass conditions, then each will occur. However, when that same sequence is placed in a property

expression, only the first pass condition of the sequence will be observed by the property, ending

that thread. Code Example 4 and Figure 1 below illustrate this concept. sequence bus_req

in Figure 1 shows four passes per the signal relationship of req and grant whereas

property bus_req_prop4 will only see the first successful pass of sequence

bus_req, causing that thread of the property to exit. Note that Figure 1 only shows the

pass/fail relationship for the sequence and the property for the specific thread starting at cycle 1.

The significance of this concept will be shown later in this paper as part of the discussion of

implication operators.

SNUG 2009 7 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

sequence bus_req;

 req ##[1:5] grant; // equivalent to:

 // req ##1 grant or

 // req ##2 grant or

 // req ##3 grant or

 // req ##4 grant or

 // req ##5 grant

endsequence:bus_req

 property bus_req_prop4;

 @(posedge clk) bus_req;

endproperty:bus_req_prop4

example_4: assert property (bus_req_prop4);

Example 4 – Sequence with Multiple Endpoints True

Figure 1 – Sequence and Property Pass/Fail for the Thread Starting at cycle 1 Inclusive

Example 4.

2.2.2 Implication Operator

Most concurrent assertions are written so that the assertion “fires” each and every clock cycle,

throughout simulation. This allows the assertion to run in the background, concurrent with the

design functionality. Since the assertion fires every clock cycle, an assertion with a sequence

that takes twelve clock cycles to execute could possibly have twelve concurrent threads running

at the same time, with each thread starting on each subsequent clock cycle. In the bus

request/grant sequence examples above, req will be tested every clock cycle, starting a new

concurrent assertion thread. If req is true, the thread will continue and test for grant on the

Note: For waveform figures, a filled square will denote the beginning of
a thread. Bubbles will denote thread endpoints. A clear bubble will de-
note a property or sequence failure and a filled bubble will denote a
property or sequence pass. pass

fail

Start of
thread

req

0 1

grant

bus_req

bus_req_prop4

2 3 4 5 6 7 8 9 10

SNUG 2009 8 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

next clock cycle. If req is false, however, the assertion will fail at that point in time. This

would be a false failure, since the assertion is testing for a sequence that starts with req testing

true. Figure 2 below expands the pass/fail conditions for bus_req_prop4 showing all the

pass/fails for each thread, where Figure 1 only shows the results for the thread starting at cycle 1.

Figure 2 – Sequence and Property Pass/Fail for all the Threads Between Cycle 0 and

Cycle 10 for Example 4.

 In Figure 2, cycle 1 has neither a pass nor a fail because there are no threads ending at that

point in time. Cycle 3 has both a pass and a fail due to two separate threads ending at that cycle.

The thread that started at cycle 1 successfully completed at cycle 3 with a pass. The thread that

started at cycle 3 ended immediately with a fail, because req is false at that cycle.

The behavior of the assertion modeled in Example 4 and fully shown in Figure 2 is not really

practical due to an assertion failure occurring almost every cycle. To make assertions usable, the

assertion property needs to be modeled so that it will only test during expected event cycles and

be idle during don’t-care cycles. SystemVerilog properties make this possible by using the

implication operator. Typically, assertions property expressions are specified with an

implication operator, either overlapping |-> or non-overlapping |=>. An implication operator

tells the property not to evaluate a property expression (the consequent) following the operator

unless the first condition before the operator (the antecedent) is true.

property example_5;

 @(posedge clk) antecedent_sequence_expression |->

 consequent_property_expression;

endproperty:example_5

Example 5 – Property Showing the Antecedent and Consequent of an Implication

In the request/grant code examples previously discussed, the designer will most likely only

want to test the request/grant sequence when req is true. For clock cycles where req is false,

the assertion is a don’t-care, and the request/grant sequence should not be evaluated. In assertion

terms, this condition is called a vacuous success. In the following example, the implication

operator prevents (guards) the consequent expression from testing when req is not true. The

assertion does not fail; it simply does not run and returns a vacuous success.

req

0 1

grant

2 3 4 5 6 7 8 9 10

bus_req_prop4

SNUG 2009 9 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

property bus_req_prop6;

 @(posedge clk) req |-> ##[1:5] grant;

endproperty:bus_req_prop6

example_6: assert property (bus_req_prop6);

Example 6 – Range in Consequent – Automatic First-Match is Applied

Figure 3 – Property Pass/Fail for all the Threads Between Cycle 0 and Cycle 10 for

Example 6. Vacuous Successes are not Noted.

Example 6 and Figure 3 show the request/grant code from Example 4, but with an implication

operator guarding against testing when req is low. The sequence from Example 4 is partitioned

into two parts: the antecedent or cause, and the consequent or effect. Note that the implication

operator is a property expression operator and cannot be used in a sequence.

The above example illustrates that the implicit first-match holds true for the consequent of an

implication that contains a sequence with a range. However, when the antecedent contains a

sequence with a range, each passing condition of the range starts a unique thread. This unique

thread in turn, starts a consequent evaluation. For the overall property expression to match, each

passing antecedent must have a matching consequent.

sequence bus_req;

 req ##[1:5] grant;

endsequence:bus_req

property bus_req_prop7;

 @(posedge clk) bus_req |-> ##[1:5] done;

endproperty:bus_req_prop7

example_7: assert property (bus_req_prop7);

Example 7 – Sequence with Multiple Endpoints used in Antecedent

The code from Example 7 is the basis for the wave diagrams in Figures 4 and 5 below.

bus_req in each figure indicates the pass/fail for the sequence used in the property antecedent.

Because this sequence has a range with multiple passing conditions, each passing condition must

have a passing consequent in order for the overall property expression to pass. In Figure 4,

signal done is true at cycle 5, which provides a pass condition for the sequence threads starting

at cycle 3 and 4. However sequence threads starting at cycle 5 and 6 do not have any

req

0 1

grant

bus_req_prop6

2 3 4 5 6 7 8 9 10

SNUG 2009 10 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

corresponding passing consequent and therefore the property fails. The implicit property first-

match does not apply in this case, because all the passing conditions in the antecedent are part of

the singular property expression inclusive. Each passing condition from cycle 2 through cycle 6

must match to a passing consequent for the property to pass.

Figure 4 – Sequence bus_req and Property bus_req_prop7 Pass/Fail Results for

Example 7

 The signals in Figure 5 below follow the same scenario as the signals in Figure 4, with the

exception that a done occurs at cycle 9. This provides a passing condition for the sequence

threads that started at cycle 5 and 6.

Figure 5 – Sequence bus_req and Property bus_req_prop7 Pass/Fail Results for

Example 7

When using a sequence that has the possibility of multiple passing conditions in an antecedent,

a much more practical model is to directly apply the first_match operator to the sequence.

Then, at most only one passing condition from the antecedent will be considered for the property

expression to pass. Example 8 and Figure 6 below show how the same inputs used in Figure 5

provide a passing property expression based on the first passing antecedent condition.

req

0 1

grant

bus_req

2 3 4 5 6 7 8 9 10

bus_req_prop7

done

11 12 13 14 15

req

0 1

grant

bus_req

2 3 4 5 6 7 8 9 10

bus_req_prop7

done

11 12 13 14 15

SNUG 2009 11 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

sequence bus_req;

 req ##[1:5] grant;

endsequence:bus_req

property bus_req_prop8;

 @(posedge clk) first_match(bus_req) |-> ##[1:5] done;

endproperty:bus_req_prop8

example_8: assert property (bus_req_prop8);

Example 8 – Antecedent Sequence with first_match Applied to Possible Multiple

Endpoints

Figure 6 – Sequence and Property Pass/Fail results for Example 8.

2.2.3 Range Repetition vs. Cycle Delay Range

 In the examples discussed to this point, the sequences used a cycle delay range.

SystemVerilog assertions have other types of ranges that are associated with the repetition of

Boolean or sequential expressions. The point to note here is that as long as the range repetition

is not failing, the range rules previously discussed regarding antecedents apply to both range

repetition and a cycle delay range. For example, in the code below, as long as req is high

within the range, the sequence expression will look for a grant to occur. Following the

example are two figures that illustrate the consecutive range repetition.

sequence bus_req;

 req[*1:5] ##1 grant;

endsequence:bus_req

property bus_req_prop9;

 @(posedge clk) bus_req |-> ##[1:2] done;

endproperty:bus_req_prop9

property bus_req_prop_fm9;

 @(posedge clk) first_match(bus_req) |-> ##[1:2] done;

endproperty:bus_req_prop_fm9

req

0 1

grant

first_match(bus_req)

2 3 4 5 6 7 8 9 10

bus_req_prop8

done

11 12 13 14 15

SNUG 2009 12 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

example_9: assert property (bus_req_prop9);

example_fm9: assert property (bus_req_prop_fm9);

Example 9 – Sequence with Multiple Endpoints in Antecedent

Figure 7 – Sequence and Property Pass/Fail Results for Example 9.

 In Figure 7, bus_req_prop9 has a thread with a passing condition at cycle 3, but does not

show the thread passing until cycle 5. Remember, all passing conditions of the antecedent for a

multiple match sequence must each have a passing consequent. For bus_req_prop9, the

property expression had to wait until req went away to ensure that all the possible passing

antecedents could be tested. Thus the test for the first thread shows passing at cycle 5. The

remaining threads starting with req high at cycles 2, 3, and 4, never started an actual antecedent

pass.

 The contrast between bus_req_prop9 and bus_req_prop_fm9 should be obvious. The

first_match operator will not wait for all the passing antecedents to show matching

consequents. Rather, first_match makes each passing antecedent a separate and unique

thread. Each time an antecedent passes, it will test for a passing consequent, and then the

property expression is completed for that thread. This concept is easier to visualize, as shown in

Figure 8.

req

0 1

grant

bus_req

2 3 4 5 6 7 8

bus_req_prop9

done

fbus_req_prop_fm9

SNUG 2009 13 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

Figure 8 – Sequence and Property Pass/Fail Results for Example 9.

 In Figure 8, bus_req_prop9 has a thread with a passing condition at cycle 3, and a failing

condition at cycle 6. Combined, this means that the property expression fails due to all the

passing antecedents not having passing consequents.

 In contrast between bus_req_prop9 and bus_req_prop_fm9, the first_match will

isolate the first passing antecedent from the rest of the possible sequence matches in the

antecedent. Thus, once a passing condition occurred at cycle 3, the property expression passed.

Other threads are started at other cycles and they either fail or just end, as shown in the figure.

 The concept that a range in the antecedent holds the property expression from completing is

the basis for the complex property discussed in the remainder of the paper. The complexity of

this property is magnified by the fact that the range is modeled as an unbounded range. As

shown in Figure 7 and Figure 8, this means that as long as the antecedent has a passing condition

or the possibility of a passing condition in the future, the property expression will never end.

3 Analysis of a Complex Property

The background of assertions and property expressions discussed in Section 2 is provided to

give a foundation for discussion of the property expression introduced in this section. Suppose a

designer wanted to monitor the number of cycles between a start pulse and an end pulse and then

verify some condition based on the number of cycles that occurred. For example, in a burst

memory write, an assertion could be used to ensure that the final memory address matches the

initial memory address plus the number of clocks (assuming a write occurred on each clock).

Another scenario might be to verify that the number of clocks between the start and end

req

0 1

grant

bus_req

2 3 4 5 6 7 8

bus_req_prop9

done

bus_req_prop_fm9

SNUG 2009 14 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

conditions is less than some maximum value. Such tests could be verified with a property using

chained implication operators as shown in Example 10.

`define TRUE 1

property prop_10;

 int v_cnt;

 @(posedge clk) ($rose(start), v_cnt = 0) |->

 (`TRUE, v_cnt++)[*0:$] ##1 done |->

 (v_cnt <= MAX);

endproperty:prop_10

example_10: assert property (prop_10);

Example 10 – Clock Cycle Counter and Max Count Comparator

The `TRUE is needed so that v_cnt would increment on every clock until done becomes

true. For the property expression to increment on each clock cycle, the consecutive range

repetition is needed. If a cycle delay range ##[0:$] were used instead of the [*0:$],the

execution of v_cnt++ would occur only once.

Chaining implication operators adds a level of complexity to a property expression that

engineers often prefer to avoid. The complexity in Example 10 is then magnified because of the

unbounded repetition in what appears to be both a consequent and an antecedent.

In order to simplify the discussion for this paper, a simpler version of the property from

Example 10 will be used as shown in Example 11 below.

property prop_11;

 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

endproperty:prop_11

example_11: assert property (prop_11);

Example 11 – Chained implication with an unbounded repetition range in an antecedent

The property expression in Example 11 can be labeled as shown in the following figure.

Figure 9 – Chained Implication Labels

Figure 9 shows the label for the first antecedent as A1, and everything to the right of the first

implication operator as consequent C1. The code between the two implication operators is

$rose(a) |-> b[*0:$] ##1 c |-> d;

 | _____a2_____/ c2

 A1 ________C1________/

SNUG 2009 15 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

labelled as a2 and is the antecedent to the second implication operator. Finally the consequent to

the right of the second implication operator is labelled c2. These labels are referred to frequently

throughout the remainder of this paper.

3.1 Simple Test to the Complex Property

Let us begin to look at this property by applying a simple test to it. To keep consistency

between code Example 10 and code Example 11, condition b will remain true through most of

the tests that follow.

Figure 10 – Failing Test for Chained Implications.

Property expression prop_11 will fail when conditions c and d are both not true on the same

cycle after the property expression has started. Figure 10 shows the property stopping at cycle 4

with a failure.

Figure 11 – Passing Test? For Chained Implications.

Why does the property in Figure 11 not stop at cycle 4 with a pass? Is there not an implied

first-match applied to consequents? There is, but in this case, the consequent has not had a

complete passing match yet. Referring to the code diagram above and Figure 9, the condition in

a2 has the repetition range applied to condition b. For the property expression a2/c2 to pass, all

a

0 1

b

2 3 4 5 6 7 8 9 10

prop_11

d

c

a

0 1

b

2 3 4 5 6 7 8 9 10

prop_11

d

c

SNUG 2009 16 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

passing conditions of a2 must have a matching passing condition of c2. With b repeating true,

the test will continue to look for matching c’s and d’s. As long as b is true and each occurrence

of c and d match, the a2/c2 expression does not end, and therefore does not pass.

Figure 12 – Neither Passing or Failing Test for Chained Implications.

In summary, as long as b is true, the property expression a2/c2 will test forever looking for the

condition of matching c’s and d’s.

3.2 Correct Way to Model the Complex Property Using first_match

In order to model the code from code Example 11, the first_match operator must be

applied to antecedent a2 (Figure 9). Then, only the first matching condition of a2 (Figure 9) will

be tested for a matching consequent, therefore limiting the unbounded range of b.

property prop_12;

 int v_cnt;

 @(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;

endproperty:prop_12

example_12: assert property (prop_12);

Example 12 – Chained Implication Using first_match on an Unbounded Repetition

Range in Antecedent

a

0 1

b

2 3 4 5 6 7 8 9 10

prop_11

d

c

SNUG 2009 17 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

Figure 13 – Real Passing Test for Chained Implications Using first_match

3.3 Alternate way of modeling the complex property using ##0

An alternate way of modelling a chained implication property expression is to replace the first

implication operator with the fusion operator. The fusion operator ##0 represents an

overlapping concatenation in sequences, where that the last sub-element of the first sequence and

the first sub-element of the second sequence hold true in the same cycle. This is another way of

stating that the second sequence starts at the same cycle in which the first sequence completes.

property prop_13a;

 int v_cnt;

 @(posedge clk) $rose(a) ##0 (b[*0:$] ##1 c) |-> d;

endproperty:prop_13a

property prop_13b;

 int v_cnt;

 @(posedge clk) $rose(a) ##0 first_match(b[*0:$] ##1 c) |-> d;

endproperty:prop_13b

example_13a: assert property (prop_13a);

example_13b: assert property (prop_13b);

Example 13 – Replace First Implication With Fusion

a

0 1

b

2 3 4 5 6 7 8 9 10

prop_13a

d

c

prop_13b

a

0 1

b

2 3 4 5 6 7 8 9 10

prop_12

d

c

SNUG 2009 18 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

Figure 14 – Fusion Operator Replacing the First Implication Operator

Replacing the first implication operator with the fusion operator may make the overall

property expression easier to understand, and it does not change the functionality. Essentially,

prop_13a and prop_13b are functionally equivalent to prop_11 and prop_12,

respectively.

3.4 The Second Implication Replaced by ##0

If an alternate way of modelling a chained implication property expression is to replace the

first implication operator with the fusion operator, then could the second implication operator is

replaced with a fusion operator?

property prop_14a;

 int v_cnt;

 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c ##0 d;

endproperty:prop_14a

property prop_14b;

 int v_cnt;

 @(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c ##0 d);

endproperty:prop_14b

example_14a: assert property (prop_14a);

example_14b: assert property (prop_14b);

Example 14 – Replace Second Implication with Fusion

Figure 15 – Fusion Operator Replaces Second Implication Operator

On first glance, one could conclude that replacing the second implication operator with a

fusion operator gives the desired implementation with or without the first_match operator.

However, there are corner conditions that do not match. For instance, a vacuous success for a2

(Figure 9) will return a vacuous success for the entire property expression containing the chained

a

0 1

b

2 3 4 5 6 7 8 9 10

prop_14a

d

c

prop_14b

SNUG 2009 19 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

implications. These same conditions that caused a vacuous success for the chained model will

cause the fusion model to fail.

property prop_15a;

 int v_cnt;

 @(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;

endproperty:prop_15a

property prop_15b;

 int v_cnt;

 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c ##0 d;

endproperty:prop_15b

example_15a: assert property (prop_15a);

example_15b: assert property (prop_15b);

Example 15 – Chained Implication with first_match vs. Fusion Replacing the Second

Implication

Figure 16 – Fusion Operator Replaces the Second Implication Operator

Property expression prop_15a has the chained implication operators and will return a

vacuous success at cycle 1 because antecedent a2 (Figure 9) is false. Property expression

prop_15b fails at cycle 1 because it uses the fusion operator instead of a second implication.

3.5 Two Properties

An approach used by designers to avoid chaining implications is to use multiple property

blocks, each with a single implication. For instance, a designer would replace the property

expression a |-> b |-> c with two separate property expressions a |-> b and b |->

c, each in its own property block. These two separate properties do not represent the same

models as the single property expression. The separate property expression with b in the

antecedent will test every cycle, and is different from the chained property expression where b

will only be tested when a passes. If the designer does not want to not use implication chaining,

then the best approach is to replace the first implication operator with a fusion operator as

a

0 1

b

2 3 4 5 6 7 8 9 10

prop_15a

d

c

prop_15b

Vacuouse Success

SNUG 2009 20 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

discussed previously, a ##0 b |-> c. This way, if either a or b fails, then the expression

has a vacuous success. c is only tested if both a and b pass.

As a side note, if the non-overlapping implication operator is used, then the ##1 should be

used instead of the ##0. So a |=> b |=> c would be replaced by a ##1 b |=> c.

3.6 Use an Upper Range Bound

A variation to the original property shown in code Examples 10 and 11 is to replace the

unbounded range with a fixed upper limit. Once the upper bound is reached, the a2/c2 (Figure 9)

property expression will return with a pass. The a2/c2 property express will still fail on the first

a2 pass/c2 fail, just like the unbounded model shown in Figure 10.

property prop_16a;

 int v_cnt;

 @(posedge clk) $rose(a) |-> b[*0:8] ##1 c |-> d;

endproperty:prop_16a

property prop_16b;

 int v_cnt;

 @(posedge clk) $rose(a) |-> first_match(b[*0:8] ##1 c) |-> d;

endproperty:prop_16b

example_16a: assert property (prop_16a);

example_16b: assert property (prop_16b);

Example 16 – Chained Implication with Bounded Repetition Range in Antecedent

Figure 17 – Bounded Range With and Without a first_match

Providing an upper bound can close the property expression giving it an ending time and

therefore a point to respond with a pass. Perhaps more interesting would be to use a variable for

the upper bound such as b[*0:upper]. Unfortunately, range values must be constants or

constant expressions. However, with some hand-waving and some fancy coding, a variable

a

0 1

b

2 3 4 5 6 7 8 9 10

prop_16a

d

c

prop_16b

SNUG 2009 21 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

upper limit can still be applied. This variable could be passed into the property as an argument

or the variable could just be accessed globally. The following code example, prop_17c shows

one way to model a range with a variable upper limit

module foo;

 bit a, d, clk;

 int upper;

 property prop_17a;

 int v_cnt;

 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

 endproperty:prop_17a

 property prop_17b;

 int v_cnt;

 @(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;

 endproperty:prop_17b

 property prop_17c;

 int v_cnt;

 @(posedge clk) ($rose(a) && (upper != 0), v_cnt = 0) |->

 ((v_cnt < upper), v_cnt++)[*0:$] ##1 c |-> d;

 endproperty:prop_17c

 ap17a: assert property (prop_17a);

 ap17b: assert property (prop_17b);

 ap17c: assert property (prop_17c);

 initial begin

 upper = 8;

 . . .

Example 17 – Variable Used to Set the Upper Range Bound

a

0 1

b

prop_17a

2 3 4 5 6 7 8 9 10

upper

11 12 13 14 15

8

c

d

prop_17b

prop_17c

SNUG 2009 22 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

Figure 18 – Variable Upper Range Bound

Figure 18 shows the contrast between the original property expression (prop_17a), the

property expression with the first_match for the second antecedent (prop_17b), and

finally, the property expression with a variable max range (prop_17c). The bounded range

property is modeled in this example so that it will exit once the range has been reached.

One additional variation on using a variable upper bound is to only test when the upper bound

has been reached. The following code example provides this capability.

module foo;

 bit a, c, d, clk;

 int upper;

 property prop_18;

 int v_cnt;

 @(posedge clk) ($rose(a) && (upper != 0), v_cnt = 0) |->

 ((v_cnt < upper), v_cnt++)[*0:$] ##1

 (v_cnt == upper) ##0 c |-> d;

 endproperty:prop_18

 ap18: assert property (prop_18);

 initial begin

 upper = 8;

 . . .

Example 18 – Variable Used to Set Upper Range Bound, Only Test When Upper Bound

is Reached

This property will test once for c and d only when the upper count has been reached. Note

that the first_match operator is not used or needed for prop_17c or prop_18 because

once v_cnt value is greater then upper, the repetition ends.

3.7 Allow Only the First Antecedent to be Vacuous

When using chained implications, there may be times when a designer will want the entire

consequent of the first antecedent to be considered false if any of the chained antecedents are

vacuous. Consider the chained property expression a |-> b |-> c. If a is false, then the

expression is vacuously true. If a is true and b is false, the expression is still vacuously true.

The following code example provides a method in which the final property expression will be

vacuously true solely due to a.

property prop_19a;

 @(posedge clk) a |-> b |-> c ;

endproperty:prop_19a

SNUG 2009 23 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

property prop_19b;

 @(posedge clk) a |-> b;

endproperty:prop_19b

property prop_19c;

 @(posedge clk) prop_19a and prop_19b;

endproperty:prop_19c

example_19c: assert property (prop_19c);

Example 19 – Chained Implication Where Only First Antecedent Can be Vacuously

True

In Example 19, prop_19a will return a vacuous success for either a or b as described in the

preceding paragraph. But, the result of property prop_19c will create a property

expression where only condition a could cause a vacuous success.

4 Conclusions

Using chained implications within a property expression for a concurrent assertion can be

complex and confusing. This complexity can be compounded if the second antecedent contains

an unbounded range. Trying to replace the single property containing chained implications with

multiple properties and assertions does not provide an equivalent model of the original chained

property expression.

This paper has shown the problems associated with unbounded ranges in a first-stage

consequent second-stage antecedent of a property containing chained implication operators. The

biggest issue is that an unbounded range in an antecedent will cause the property expression to

never end, thus never returning a pass condition. This is confusing if there are chained

implications and the unbounded range is in the consequent of the first implication and in the

antecedent of the second implication of the chaining. The consequent of implications have an

implied first-match, but that does not work as expected when chaining implications where

unbounded ranges are used. In actuality, the first-match does work. The problem is that an

unbounded range in an antecedent prevents the property expression from ever ending. If the

property never ends, there is never a first-match pass.

There are three ways in which a property with an unbounded range in the antecedent can end.

First, if the consequent ever fails, the property expression ends. Second, by applying the

first_match operator to the antecedent containing the unbounded range, the implication

operator will be limited to only matching the one antecedent pass to one consequent match. And

third, applying an upper bound to the range in the antecedent provides an end point for the

property expression to return a pass.

The right solution is dependent upon the design and the intent of the property. Knowing how

unbounded ranges work in an antecedent will help in choosing the right solution.

SNUG 2009 24 If Chained Implications in Properties

 Weren’t So Hard, They’d be Easy

4 References

[1] “The Art of Verification with SystemVerilog Assertions”, book by Faisal I. Haque, Johathan

Michelson, Khizar A. Khan. Published by Verification Central, copyright 2006, ISBN-13:

978-0-9711994-1-5

[2] “SystemVerilog Assertions Handbook”, book by Ben Cohen, Srinivasan Venkataramanan,

Ajeetha Kumari. Published by VhdlCohen Publishing, copyright 2005, ISBN 0-9705394-7-

9

[3] “IEEE 1800-2005 standard for the SystemVerilog: Unified Hardware Design, Specification

and Verification Language”, IEEE, Piscataway, New Jersey, copyright 2005. ISBN 0-7381-

4811-3.

[4] “Being Assertive With Your X”, paper by Don Mills. Published in the proceedings of SNUG

San Jose 2004

5 About the Author

Mr. Don Mills has been involved in ASIC design since 1986. During that time, he has worked

on more than 30 ASIC projects. Don started using top-down design methodology in 1991

(Synopsys DC 1.2). Don has developed and implemented top-down ASIC design flow at several

companies. His specialty is integrating tools and automating the flow. Don works for Microchip

Technology Inc. as an internal SystemVerilog and Verilog consultant. Don is a member of the

IEEE Verilog and System Verilog committees that are working on language issues and

enhancements. Don has authored and co-authored numerous papers, such as “SystemVerilog

Assertions are for Design Engineers Too!”, “RTL Coding Styles that Yield Simulation and

Synthesis Mismatches”, and “Standard Gotchas” papers on the gotchas of Verilog and

SystemVerilog. Copies of these papers can be found at www.lcdm-eng.com. Mr. Mills can be

reached at mills@lcdm-eng.com or don.mills@microchip.com

