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ABSTRACT 

 

The use of implication operators in concurrent assertion properties is critical to masking false 

negatives during verification.  However, many designers shy away from using multiple 

implications within the same property because they are difficult to understand and maintain.  

This paper will dissect a two-level chained implication in which the first level consequent second 

level antecedent contains an eventuality condition (an unbounded range).  Analysis will consider 

numerous scenarios and what-if’s regarding why and how this property works the way it does. 
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1 Introduction 
 

Assertions have become a key component in both the design and verification phases of a 

project.  Liberal use and accurate modelling of assertions, which includes properties and 

sequences, provide continuous visibility to a design during verification.  In addition to visibility, 

concurrent assertions are very useful for monitoring interaction and protocol between signals in 

the design. 

 

Another feature of assertions is that they can very precisely describe the intent of a design.  

Assertions can be used as a “second source” for design verification since the nomenclature used 

to describe assertions is significantly different from the standard RTL/synthesizable modelling.  

Finally, with a significant scattering of assertions throughout a design, a formal tool can make 

use of these assertions to analyze and compare the design described by the assertions to the RTL 

model of the design. 

 

The syntax and modelling for assertions can be considered very cryptic.  This is, of course, the 

reason why assertions are so concise.  However, with this cryptic, concise syntax comes a 

learning curve that can be difficult to climb.  Then once understood, the syntax is difficult to 

maintain or remember if it is not used regularly. 

 

This paper will begin by giving a brief definition of the key components of assertions and 

some basic uses for assertions.  The paper does expect that the audience has a basic 

understanding of SystemVerilog Assertions.  A more complex model will then be introduced and 

this model will be the basis for the remainder of the paper.  Variations of this complex model 

will be discussed, analyzed, and compared to the original, as a means of understanding the 

details of how the original model works. 

 

2 What and Why of SystemVerilog Assertions  

SystemVerilog has two types of assertions: immediate assertions and concurrent assertions.  

Both types of assertions are used to perform tests on a design whenever the assertion is called or 

executed.  When an assertion test is completed, a pass or fail statement from the assertion can be 

executed.  Assertions provide a mechanism for continuous monitoring of signals and conditions 

across all simulations. 

 

2.1 Immediate Assertion 

Immediate assertions execute in zero simulation time, i.e., they execute immediately.  An 

immediate assertion is a procedural statement, and therefore can be placed anywhere a 

procedural statement can be placed: within always blocks, initial blocks, tasks, and functions.  

Immediate assertions are very similar to if/else statements in that they can have both pass and fail 

procedural statements.  However they differ from if/else statements in many ways including: 

 

1. Assertions are ignored by synthesis. 
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2. Assertion execution can be disabled and enabled during simulation. 

3. Assertions are intended for monitoring a design rather than modeling a design. 

4. Assertions execute severity level tasks if the assertion fails. 

The syntax for an immediate assertion is: 

assert (expression) [pass_statement;] [else fail_statement;]  

 

Note that the pass_statement and the else fail_statement are optional.  If the 

fail_statement is left off, the default severity level of $error will execute. 

 

For examples and details on using immediate assertions to trap logic X and Z problems, refer 

to the paper “Being Assertive With Your X” [4], published in the proceedings of SNUG 2004. 

 

2.2 Concurrent Assertions 

Concurrent assertions use a clock or some other repetitive signal (referred to hereafter as the 

property clock) to trigger the assertion evaluation.  The primary difference between immediate 

and concurrent assertions is that concurrent assertions evaluate conditions over time, whereas 

immediate assertions test at the point in time when the assertion is called.  The syntax difference 

between the two types of assertions is very slight.  The concurrent assertion directive includes 

the key word property, whereas the immediate assertion does not. The syntax for a concurrent 

assertion directive is: 

 
assert property (property_expr) [pass_statement;] [else fail_statement;]  

 

The argument to assert property is a property expression which differs from the 

argument of an immediate assertion, which is a simple Boolean expression.  A property 

expression is comprised of a clock specification and a sequence of Boolean expressions tested 

over time.  The expressions are evaluated on the clock edge specified.  The sequence of Boolean 

expressions can be spread over multiple clock cycles by using the ## cycle delay operator 

between each expression. 
 

The following code is an example of a completely self-contained concurrent assertion 

directive. 

 
example_1:assert property  

  (@(posedge clk) ( req ##1 grant ##10 !req ##1 !grant)) 

      else $error("bus request failed"); 

 

Example 1 – Self Contained Concurrent Assertion Directive 
 

The sequence in the example above is read as: “req should be true (high) immediately, 

followed by grant being true (high) one clock cycle later. After ten more clock cycles, req should 

be false (low), followed by grant being false (low) one clock cycle later.”  For this assertion to 

succeed, each expression must evaluate true at its specified time. 

 



SNUG 2009                                                                             6                          If Chained Implications in Properties 

 Weren’t So Hard, They’d be Easy  

 

2.2.1 Property and Sequence Blocks 

The property expression of a concurrent assertion can be defined in a separate block of code, 

between the keywords property and endproperty.  This enables the same property expression to 

be re-used by multiple concurrent assertions. 

 
property bus_req_prop2; 

 @(posedge clk) req ##1 grant ##10 !req ##1 !grant; 

endproperty:bus_req_prop2 

 

example_2:assert property (bus_req_prop2) 

 else $error("bus request failed"); 

 

Example 2 – Concurrent Assertion Calling a Property Block 
 

A complex property expression can be broken into smaller sequence building blocks, specified 

between sequence and endsequence. This is illustrated in the following example. 

 
sequence start_bus_req; 

 req ##1 grant; 

endsequence:start_bus_req 

 

sequence end_bus_req; 

 !req ##1 !grant; 

endsequence:end_bus_req 

 

property bus_req_prop3; 

 @(posedge clk) start_bus_req ##10 end_bus_req; 

endproperty:bus_req_prop3 

 

example_3: assert property (bus_req_prop3); 

 

Example 3 – Assertion, Property and Sequence Blocks Used Together 
 

One difference between a property and a sequence is that property expressions contain an 

implicit first-match whereas a sequence does not.  This means that if a sequence has multiple 

pass conditions, then each will occur.  However, when that same sequence is placed in a property 

expression, only the first pass condition of the sequence will be observed by the property, ending 

that thread.  Code Example 4 and Figure 1 below illustrate this concept.  sequence bus_req 

in Figure 1 shows four passes per the signal relationship of req and grant whereas 

property bus_req_prop4 will only see the first successful pass of sequence 

bus_req, causing that thread of the property to exit.   Note that Figure 1 only shows the 

pass/fail relationship for the sequence and the property for the specific thread starting at cycle 1.   

The significance of this concept will be shown later in this paper as part of the discussion of 

implication operators. 
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sequence bus_req; 

 req ##[1:5] grant; // equivalent to: 

                    // req ##1 grant or 

         // req ##2 grant or 

         // req ##3 grant or 

         // req ##4 grant or 

         // req ##5 grant 

endsequence:bus_req 

 

 property bus_req_prop4; 

 @(posedge clk) bus_req; 

endproperty:bus_req_prop4 

 

example_4: assert property (bus_req_prop4); 

 

Example 4 – Sequence with Multiple Endpoints True 
 

 

 
     

 

Figure 1 – Sequence and Property Pass/Fail for the Thread Starting at cycle 1 Inclusive 

Example 4. 

 

   

 

2.2.2 Implication Operator 

Most concurrent assertions are written so that the assertion “fires” each and every clock cycle, 

throughout simulation. This allows the assertion to run in the background, concurrent with the 

design functionality.  Since the assertion fires every clock cycle, an assertion with a sequence 

that takes twelve clock cycles to execute could possibly have twelve concurrent threads running 

at the same time, with each thread starting on each subsequent clock cycle.  In the bus 

request/grant sequence examples above, req will be tested every clock cycle, starting a new 

concurrent assertion thread.  If req is true, the thread will continue and test for grant on the 

Note:  For waveform figures, a filled square will denote the beginning of 
a thread.  Bubbles will denote thread endpoints.  A clear bubble will de-
note a property or sequence failure and a filled bubble will denote a 
property or sequence pass. pass 

fail 

Start of 
thread 

req 

0 1 

grant 

bus_req 

bus_req_prop4 

2 3 4 5 6 7 8 9 10 
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next clock cycle.  If req is false, however, the assertion will fail at that point in time.  This 

would be a false failure, since the assertion is testing for a sequence that starts with req testing 

true.  Figure 2 below expands the pass/fail conditions for bus_req_prop4 showing all the 

pass/fails for each thread, where Figure 1 only shows the results for the thread starting at cycle 1. 

 

 
 

Figure 2 – Sequence and Property Pass/Fail for all the Threads Between Cycle 0 and 

Cycle 10 for Example 4. 

 

 In Figure 2, cycle 1 has neither a pass nor a fail because there are no threads ending at that 

point in time.  Cycle 3 has both a pass and a fail due to two separate threads ending at that cycle.  

The thread that started at cycle 1 successfully completed at cycle 3 with a pass.  The thread that 

started at cycle 3 ended immediately with a fail, because req is false at that cycle.   

 

The behavior of the assertion modeled in Example 4 and fully shown in Figure 2 is not really 

practical due to an assertion failure occurring almost every cycle.  To make assertions usable, the 

assertion property needs to be modeled so that it will only test during expected event cycles and 

be idle during don’t-care cycles.  SystemVerilog properties make this possible by using the 

implication operator.  Typically, assertions property expressions are specified with an 

implication operator, either overlapping |-> or non-overlapping |=>.  An implication operator 

tells the property not to evaluate a property expression (the consequent) following the operator 

unless the first condition before the operator (the antecedent) is true. 

 
property example_5; 

 @(posedge clk) antecedent_sequence_expression |-> 

             consequent_property_expression; 

endproperty:example_5 

 

Example 5 – Property Showing the Antecedent and Consequent of an Implication 

 

In the request/grant code examples previously discussed, the designer will most likely only 

want to test the request/grant sequence when req is true.  For clock cycles where req is false, 

the assertion is a don’t-care, and the request/grant sequence should not be evaluated.  In assertion 

terms, this condition is called a vacuous success.  In the following example, the implication 

operator prevents (guards) the consequent expression from testing when req is not true.  The 

assertion does not fail; it simply does not run and returns a vacuous success.  

 

req 

0 1 

grant 

2 3 4 5 6 7 8 9 10 

bus_req_prop4 
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property bus_req_prop6; 

 @(posedge clk) req |-> ##[1:5] grant; 

endproperty:bus_req_prop6 

 
example_6: assert property (bus_req_prop6); 

 

Example 6 – Range in Consequent – Automatic First-Match is Applied 

 

 
 

Figure 3 – Property Pass/Fail for all the Threads Between Cycle 0 and Cycle 10 for 

Example 6.  Vacuous Successes are not Noted. 

 

Example 6 and Figure 3 show the request/grant code from Example 4, but with an implication 

operator guarding against testing when req is low.  The sequence from Example 4 is partitioned 

into two parts: the antecedent or cause, and the consequent or effect.  Note that the implication 

operator is a property expression operator and cannot be used in a sequence. 

 

The above example illustrates that the implicit first-match holds true for the consequent of an 

implication that contains a sequence with a range.  However, when the antecedent contains a 

sequence with a range, each passing condition of the range starts a unique thread.  This unique 

thread in turn, starts a consequent evaluation.  For the overall property expression to match, each 

passing antecedent must have a matching consequent. 

 
sequence bus_req; 

 req ##[1:5] grant; 

endsequence:bus_req 

 

property bus_req_prop7; 

 @(posedge clk) bus_req |->  ##[1:5] done; 

endproperty:bus_req_prop7 

 

example_7: assert property (bus_req_prop7); 

 

Example 7 – Sequence with Multiple Endpoints used in Antecedent 

 

The code from Example 7 is the basis for the wave diagrams in Figures 4 and 5 below.  

bus_req in each figure indicates the pass/fail for the sequence used in the property antecedent.  

Because this sequence has a range with multiple passing conditions, each passing condition must 

have a passing consequent in order for the overall property expression to pass.  In Figure 4, 

signal done is true at cycle 5, which provides a pass condition for the sequence threads starting 

at cycle 3 and 4.  However sequence threads starting at cycle 5 and 6 do not have any 

req 

0 1 

grant 

bus_req_prop6 

2 3 4 5 6 7 8 9 10 
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corresponding passing consequent and therefore the property fails.  The implicit property first-

match does not apply in this case, because all the passing conditions in the antecedent are part of 

the singular property expression inclusive.  Each passing condition from cycle 2 through cycle 6 

must match to a passing consequent for the property to pass. 

 

 
 

Figure 4 – Sequence bus_req and Property bus_req_prop7 Pass/Fail Results for 

Example 7 
 

 The signals in Figure 5 below follow the same scenario as the signals in Figure 4, with the 

exception that a done occurs at cycle 9.  This provides a passing condition for the sequence 

threads that started at cycle 5 and 6. 

 

 

 
 

Figure 5 – Sequence bus_req and Property bus_req_prop7 Pass/Fail Results for 

Example 7 
 

When using a sequence that has the possibility of multiple passing conditions in an antecedent, 

a much more practical model is to directly apply the first_match operator to the sequence.  

Then, at most only one passing condition from the antecedent will be considered for the property 

expression to pass.  Example 8 and Figure 6 below show how the same inputs used in Figure 5 

provide a passing property expression based on the first passing antecedent condition. 

 

req 

0 1 

grant 

bus_req 

2 3 4 5 6 7 8 9 10 

bus_req_prop7 

done 

11 12 13 14 15 

req 

0 1 

grant 

bus_req 

2 3 4 5 6 7 8 9 10 

bus_req_prop7 

done 

11 12 13 14 15 
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sequence bus_req; 

 req ##[1:5] grant; 

endsequence:bus_req 

 

property bus_req_prop8; 

 @(posedge clk) first_match(bus_req) |->  ##[1:5] done; 

endproperty:bus_req_prop8 

 

example_8: assert property (bus_req_prop8); 

 

Example 8 – Antecedent Sequence with first_match Applied to Possible Multiple 

Endpoints 

 

 

 
 

Figure 6 – Sequence and Property Pass/Fail results for Example 8. 
 

2.2.3 Range Repetition vs. Cycle Delay Range 

 In the examples discussed to this point, the sequences used a cycle delay range.  

SystemVerilog assertions have other types of ranges that are associated with the repetition of 

Boolean or sequential expressions.  The point to note here is that as long as the range repetition 

is not failing, the range rules previously discussed regarding antecedents apply to both range 

repetition and a cycle delay range.  For example, in the code below, as long as req is high 

within the range, the sequence expression will look for a grant to occur.  Following the 

example are two figures that illustrate the consecutive range repetition. 

 
sequence bus_req; 

 req[*1:5] ##1 grant; 

endsequence:bus_req 

 

property bus_req_prop9; 

 @(posedge clk) bus_req |-> ##[1:2] done; 

endproperty:bus_req_prop9 

 

property bus_req_prop_fm9; 

 @(posedge clk) first_match(bus_req) |-> ##[1:2] done; 

endproperty:bus_req_prop_fm9 

 

req 

0 1 

grant 

first_match(bus_req) 

2 3 4 5 6 7 8 9 10 

bus_req_prop8 

done 

11 12 13 14 15 
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example_9:   assert property (bus_req_prop9); 

example_fm9: assert property (bus_req_prop_fm9); 

 

Example 9 – Sequence with Multiple Endpoints in Antecedent 

 

 

 
 

Figure 7 – Sequence and Property Pass/Fail Results for Example 9. 

 

 In Figure 7, bus_req_prop9 has a thread with a passing condition at cycle 3, but does not 

show the thread passing until cycle 5.  Remember, all passing conditions of the antecedent for a 

multiple match sequence must each have a passing consequent.  For bus_req_prop9, the 

property expression had to wait until req went away to ensure that all the possible passing 

antecedents could be tested.  Thus the test for the first thread shows passing at cycle 5.  The 

remaining threads starting with req high at cycles 2, 3, and 4, never started an actual antecedent 

pass. 

 

 The contrast between bus_req_prop9 and bus_req_prop_fm9 should be obvious.  The 

first_match operator will not wait for all the passing antecedents to show matching 

consequents.  Rather, first_match makes each passing antecedent a separate and unique 

thread.  Each time an antecedent passes, it will test for a passing consequent, and then the 

property expression is completed for that thread.  This concept is easier to visualize, as shown in 

Figure 8. 

 

req 

0 1 

grant 

bus_req 

2 3 4 5 6 7 8 

bus_req_prop9 

done 

fbus_req_prop_fm9 
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Figure 8 – Sequence and Property Pass/Fail Results for Example 9. 

 

 In Figure 8, bus_req_prop9 has a thread with a passing condition at cycle 3, and a failing 

condition at cycle 6.  Combined, this means that the property expression fails due to all the 

passing antecedents not having passing consequents.   

 

 In contrast between bus_req_prop9 and bus_req_prop_fm9, the first_match will 

isolate the first passing antecedent from the rest of the possible sequence matches in the 

antecedent.  Thus, once a passing condition occurred at cycle 3, the property expression passed.  

Other threads are started at other cycles and they either fail or just end, as shown in the figure. 

 

 The concept that a range in the antecedent holds the property expression from completing is 

the basis for the complex property discussed in the remainder of the paper.  The complexity of 

this property is magnified by the fact that the range is modeled as an unbounded range.  As 

shown in Figure 7 and Figure 8, this means that as long as the antecedent has a passing condition 

or the possibility of a passing condition in the future, the property expression will never end. 

 

 

3 Analysis of a Complex Property 
 

The background of assertions and property expressions discussed in Section 2 is provided to 

give a foundation for discussion of the property expression introduced in this section.  Suppose a 

designer wanted to monitor the number of cycles between a start pulse and an end pulse and then 

verify some condition based on the number of cycles that occurred.  For example, in a burst 

memory write, an assertion could be used to ensure that the final memory address matches the 

initial memory address plus the number of clocks (assuming a write occurred on each clock).  

Another scenario might be to verify that the number of clocks between the start and end 

req 

0 1 

grant 

bus_req 

2 3 4 5 6 7 8 

bus_req_prop9 

done 

bus_req_prop_fm9 
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conditions is less than some maximum value.  Such tests could be verified with a property using 

chained implication operators as shown in Example 10. 

 
`define TRUE 1  

 

property prop_10; 

 int v_cnt; 

 @(posedge clk) ($rose(start), v_cnt = 0) |->  

      (`TRUE, v_cnt++)[*0:$] ##1 done |-> 

       (v_cnt <= MAX);        

endproperty:prop_10 

 

example_10: assert property (prop_10); 

 

Example 10 – Clock Cycle Counter and Max Count Comparator 

 

 

The `TRUE is needed so that v_cnt would increment on every clock until done becomes 

true.  For the property expression to increment on each clock cycle, the consecutive range 

repetition is needed.  If a cycle delay range ##[0:$] were used instead of the [*0:$],the 

execution of v_cnt++ would occur only once. 

 

Chaining implication operators adds a level of complexity to a property expression that 

engineers often prefer to avoid.  The complexity in Example 10 is then magnified because of the 

unbounded repetition in what appears to be both a consequent and an antecedent. 

 

In order to simplify the discussion for this paper, a simpler version of the property from 

Example 10 will be used as shown in Example 11 below. 

 
property prop_11; 

 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;        

endproperty:prop_11 

 

example_11: assert property (prop_11); 

 

Example 11 – Chained implication with an unbounded repetition range in an antecedent 

 

 

The property expression in Example 11 can be labeled as shown in the following figure. 

 
Figure 9 – Chained Implication Labels 

 

Figure 9 shows the label for the first antecedent as A1, and everything to the right of the first 

implication operator as consequent C1.  The code between the two implication operators is 

$rose(a)  |-> b[*0:$] ##1 c |-> d; 

  |           \_____a2_____/    c2 

  A1          \________C1________/ 
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labelled as a2 and is the antecedent to the second implication operator.  Finally the consequent to 

the right of the second implication operator is labelled c2.  These labels are referred to frequently 

throughout the remainder of this paper. 

 

3.1 Simple Test to the Complex Property 

Let us begin to look at this property by applying a simple test to it.  To keep consistency 

between code Example 10 and code Example 11, condition b will remain true through most of 

the tests that follow. 

 

 
 

Figure 10 – Failing Test for Chained Implications. 

 

Property expression prop_11 will fail when conditions c and d are both not true on the same 

cycle after the property expression has started.  Figure 10 shows the property stopping at cycle 4 

with a failure. 

 

 
 

Figure 11 – Passing Test? For Chained Implications. 

 

Why does the property in Figure 11 not stop at cycle 4 with a pass?  Is there not an implied 

first-match applied to consequents?  There is, but in this case, the consequent has not had a 

complete passing match yet.  Referring to the code diagram above and Figure 9, the condition in 

a2 has the repetition range applied to condition b.  For the property expression a2/c2 to pass, all 

a 

0 1 

b 

2 3 4 5 6 7 8 9 10 

prop_11 

d 

c 

a 

0 1 

b 

2 3 4 5 6 7 8 9 10 

prop_11 

d 

c 
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passing conditions of a2 must have a matching passing condition of c2.  With b repeating true, 

the test will continue to look for matching c’s and d’s.  As long as b is true and each occurrence 

of c and d match, the a2/c2 expression does not end, and therefore does not pass.  

 

 

  
 

Figure 12 – Neither Passing or Failing Test for Chained Implications. 

 

In summary, as long as b is true, the property expression a2/c2 will test forever looking for the 

condition of matching c’s and d’s.  

3.2 Correct Way to Model the Complex Property Using first_match 

In order to model the code from code Example 11, the first_match operator must be 

applied to antecedent a2 (Figure 9).  Then, only the first matching condition of a2 (Figure 9) will 

be tested for a matching consequent, therefore limiting the unbounded range of b.   

 
property prop_12; 

 int v_cnt; 

 @(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;        

endproperty:prop_12 

 

example_12: assert property (prop_12); 

 

Example 12 – Chained Implication Using first_match on an Unbounded Repetition 

Range in Antecedent 

 

 

a 
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b 

2 3 4 5 6 7 8 9 10 

prop_11 

d 
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Figure 13 – Real Passing Test for Chained Implications Using first_match 

 

3.3 Alternate way of modeling the complex property using ##0 

An alternate way of modelling a chained implication property expression is to replace the first 

implication operator with the fusion operator.  The fusion operator ##0 represents an 

overlapping concatenation in sequences, where that the last sub-element of the first sequence and 

the first sub-element of the second sequence hold true in the same cycle.  This is another way of 

stating that the second sequence starts at the same cycle in which the first sequence completes. 

 
property prop_13a; 

 int v_cnt; 

 @(posedge clk) $rose(a) ##0 (b[*0:$] ##1 c) |-> d;        

endproperty:prop_13a 

 

property prop_13b; 

 int v_cnt; 

 @(posedge clk) $rose(a) ##0 first_match(b[*0:$] ##1 c) |-> d;        

endproperty:prop_13b 

 

example_13a: assert property (prop_13a); 

example_13b: assert property (prop_13b); 

 

Example 13 – Replace First Implication With Fusion 
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Figure 14 – Fusion Operator Replacing the First Implication Operator 

 

Replacing the first implication operator with the fusion operator may make the overall 

property expression easier to understand, and it does not change the functionality.  Essentially, 

prop_13a and prop_13b are functionally equivalent to prop_11 and prop_12, 

respectively. 

 

3.4 The Second Implication Replaced by ##0 

If an alternate way of modelling a chained implication property expression is to replace the 

first implication operator with the fusion operator, then could the second implication operator is 

replaced with a fusion operator? 

 
property prop_14a; 

 int v_cnt; 

 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c ##0 d;        

endproperty:prop_14a 

 

property prop_14b; 

 int v_cnt; 

 @(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c ##0 d);        

endproperty:prop_14b 

 

example_14a: assert property (prop_14a); 

example_14b: assert property (prop_14b); 

 

Example 14 – Replace Second Implication with Fusion 

  

 
 

Figure 15 – Fusion Operator Replaces Second Implication Operator 

 

On first glance, one could conclude that replacing the second implication operator with a 

fusion operator gives the desired implementation with or without the first_match operator.  

However, there are corner conditions that do not match.  For instance, a vacuous success for a2 

(Figure 9) will return a vacuous success for the entire property expression containing the chained 
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prop_14a 
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c 

prop_14b 
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implications.  These same conditions that caused a vacuous success for the chained model will 

cause the fusion model to fail. 

 
property prop_15a; 

 int v_cnt; 

 @(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;        

endproperty:prop_15a 

 

property prop_15b; 

 int v_cnt; 

 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c ##0 d;        

endproperty:prop_15b 

 

example_15a: assert property (prop_15a); 

example_15b: assert property (prop_15b); 

 

Example 15 – Chained Implication with first_match vs. Fusion Replacing the Second 

Implication 

 

 
 

Figure 16 – Fusion Operator Replaces the Second Implication Operator 

 

Property expression prop_15a has the chained implication operators and will return a 

vacuous success at cycle 1 because antecedent a2 (Figure 9) is false.  Property expression 

prop_15b fails at cycle 1 because it uses the fusion operator instead of a second implication. 

 

3.5 Two Properties 

An approach used by designers to avoid chaining implications is to use multiple property 

blocks, each with a single implication.  For instance, a designer would replace the property 

expression a |-> b |-> c with two separate property expressions a |-> b and b |-> 

c, each in its own property block.  These two separate properties do not represent the same 

models as the single property expression.  The separate property expression with b in the 

antecedent will test every cycle, and is different from the chained property expression where b 

will only be tested when a passes.  If the designer does not want to not use implication chaining, 

then the best approach is to replace the first implication operator with a fusion operator as 

a 
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discussed previously,  a ##0 b |-> c.  This way, if either a or b fails, then the expression 

has a vacuous success.  c is only tested if both a and b pass. 

 

As a side note, if the non-overlapping implication operator is used, then the ##1 should be 

used instead of the ##0.  So a |=> b |=> c would be replaced by a ##1 b |=> c. 

 

3.6 Use an Upper Range Bound 

A variation to the original property shown in code Examples 10 and 11 is to replace the 

unbounded range with a fixed upper limit.  Once the upper bound is reached, the a2/c2 (Figure 9) 

property expression will return with a pass.  The a2/c2 property express will still fail on the first 

a2 pass/c2 fail, just like the unbounded model shown in Figure 10. 
 

property prop_16a; 

 int v_cnt; 

 @(posedge clk) $rose(a) |-> b[*0:8] ##1 c |-> d;        

endproperty:prop_16a 

 

property prop_16b; 

 int v_cnt; 

 @(posedge clk) $rose(a) |-> first_match(b[*0:8] ##1 c) |-> d;        

endproperty:prop_16b 

 

example_16a: assert property (prop_16a); 

example_16b: assert property (prop_16b); 

 

Example 16 – Chained Implication with Bounded Repetition Range in Antecedent 

 
 

 
 

Figure 17 – Bounded Range With and Without a first_match 

 

Providing an upper bound can close the property expression giving it an ending time and 

therefore a point to respond with a pass.  Perhaps more interesting would be to use a variable for 

the upper bound such as b[*0:upper].  Unfortunately, range values must be constants or 

constant expressions.  However, with some hand-waving and some fancy coding, a variable 
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upper limit can still be applied.  This variable could be passed into the property as an argument 

or the variable could just be accessed globally.  The following code example, prop_17c shows 

one way to model a range with a variable upper limit 
 

module foo; 

  bit a, d, clk; 

  int upper; 

 

 property prop_17a; 

  int v_cnt; 

  @(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;        

 endproperty:prop_17a 

 

 property prop_17b; 

  int v_cnt; 

  @(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;        

 endproperty:prop_17b 

 

  property prop_17c; 

   int v_cnt; 

   @(posedge clk) ($rose(a) && (upper != 0), v_cnt = 0) |->  

         ((v_cnt < upper), v_cnt++)[*0:$] ##1 c |-> d;        

 endproperty:prop_17c 

 

 

 ap17a: assert property (prop_17a); 

 ap17b: assert property (prop_17b); 

 ap17c: assert property (prop_17c); 

 

 initial begin 

  upper = 8; 

  . . . 

 

Example 17 – Variable Used to Set the Upper Range Bound 
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Figure 18 – Variable Upper Range Bound 

 

Figure 18 shows the contrast between the original property expression (prop_17a), the 

property expression with the first_match for the second antecedent (prop_17b), and 

finally, the property expression with a variable max range (prop_17c).  The bounded range 

property is modeled in this example so that it will exit once the range has been reached. 

 

One additional variation on using a variable upper bound is to only test when the upper bound 

has been reached.  The following code example provides this capability. 

 
module foo; 

  bit a, c, d, clk; 

  int upper; 

 

  property prop_18; 

   int v_cnt; 

   @(posedge clk) ($rose(a) && (upper != 0), v_cnt = 0) |->  

         ((v_cnt < upper), v_cnt++)[*0:$] ##1  

           (v_cnt == upper) ##0 c |-> d;        

 endproperty:prop_18 

 

 

 ap18: assert property (prop_18); 

 

 initial begin 

  upper = 8; 

  . . . 

 

Example 18 – Variable Used to Set Upper Range Bound, Only Test When Upper Bound 

is Reached 

 

This property will test once for c and d only when the upper count has been reached.   Note 

that the first_match operator is not used or needed for prop_17c or prop_18 because 

once v_cnt value is greater then upper, the repetition ends. 

 

3.7 Allow Only the First Antecedent to be Vacuous 

 

When using chained implications, there may be times when a designer will want the entire 

consequent of the first antecedent to be considered false if any of the chained antecedents are 

vacuous.  Consider the chained property expression a |-> b |-> c.  If a is false, then the 

expression is vacuously true.  If a is true and b is false, the expression is still vacuously true.  

The following code example provides a method in which the final property expression will be 

vacuously true solely due to a. 

 
property prop_19a; 

 @(posedge clk) a |-> b |-> c ;        

endproperty:prop_19a 
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property prop_19b; 

 @(posedge clk) a |-> b;        

endproperty:prop_19b 

 

property prop_19c; 

 @(posedge clk) prop_19a and prop_19b;  

endproperty:prop_19c 

 

example_19c: assert property (prop_19c); 

 

Example 19 – Chained Implication Where Only First Antecedent Can be Vacuously 

True 

 

In Example 19, prop_19a will return a vacuous success for either a or b as described in the 

preceding paragraph.  But, the result of property prop_19c will create a property 

expression where only condition a could cause a vacuous success. 

 

4  Conclusions 

Using chained implications within a property expression for a concurrent assertion can be 

complex and confusing.  This complexity can be compounded if the second antecedent contains 

an unbounded range.  Trying to replace the single property containing chained implications with 

multiple properties and assertions does not provide an equivalent model of the original chained 

property expression.   

 

This paper has shown the problems associated with unbounded ranges in a first-stage 

consequent second-stage antecedent of a property containing chained implication operators.  The 

biggest issue is that an unbounded range in an antecedent will cause the property expression to 

never end, thus never returning a pass condition.  This is confusing if there are chained 

implications and the unbounded range is in the consequent of the first implication and in the 

antecedent of the second implication of the chaining.  The consequent of implications have an 

implied first-match, but that does not work as expected when chaining implications where 

unbounded ranges are used.  In actuality, the first-match does work.  The problem is that an 

unbounded range in an antecedent prevents the property expression from ever ending.  If the 

property never ends, there is never a first-match pass.  

 

There are three ways in which a property with an unbounded range in the antecedent can end.  

First, if the consequent ever fails, the property expression ends.  Second, by applying the 

first_match operator to the antecedent containing the unbounded range, the implication 

operator will be limited to only matching the one antecedent pass to one consequent match.  And 

third, applying an upper bound to the range in the antecedent provides an end point for the 

property expression to return a pass. 

 

The right solution is dependent upon the design and the intent of the property.  Knowing how 

unbounded ranges work in an antecedent will help in choosing the right solution. 
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