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ABSTRACT

The use of implication operators in concurrent assertion properties is critical to masking false
negatives during verification. However, many designers shy away from using multiple
implications within the same property because they are difficult to understand and maintain.
This paper will dissect a two-level chained implication in which the first level consequent second
level antecedent contains an eventuality condition (an unbounded range). Analysis will consider
numerous scenarios and what-if’s regarding why and how this property works the way it does.
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1 Introduction

Assertions have become a key component in both the design and verification phases of a
project. Liberal use and accurate modelling of assertions, which includes properties and
sequences, provide continuous visibility to a design during verification. In addition to visibility,
concurrent assertions are very useful for monitoring interaction and protocol between signals in
the design.

Another feature of assertions is that they can very precisely describe the intent of a design.
Assertions can be used as a “second source” for design verification since the nomenclature used
to describe assertions is significantly different from the standard RTL/synthesizable modelling.
Finally, with a significant scattering of assertions throughout a design, a formal tool can make
use of these assertions to analyze and compare the design described by the assertions to the RTL
model of the design.

The syntax and modelling for assertions can be considered very cryptic. This is, of course, the
reason why assertions are so concise. However, with this cryptic, concise syntax comes a
learning curve that can be difficult to climb. Then once understood, the syntax is difficult to
maintain or remember if it is not used regularly.

This paper will begin by giving a brief definition of the key components of assertions and
some basic uses for assertions. The paper does expect that the audience has a basic
understanding of SystemVerilog Assertions. A more complex model will then be introduced and
this model will be the basis for the remainder of the paper. Variations of this complex model
will be discussed, analyzed, and compared to the original, as a means of understanding the
details of how the original model works.

2 What and Why of SystemVerilog Assertions

SystemVerilog has two types of assertions: immediate assertions and concurrent assertions.
Both types of assertions are used to perform tests on a design whenever the assertion is called or
executed. When an assertion test is completed, a pass or fail statement from the assertion can be
executed. Assertions provide a mechanism for continuous monitoring of signals and conditions
across all simulations.

2.1 Immediate Assertion

Immediate assertions execute in zero simulation time, i.e., they execute immediately. An
immediate assertion is a procedural statement, and therefore can be placed anywhere a
procedural statement can be placed: within always blocks, initial blocks, tasks, and functions.
Immediate assertions are very similar to if/else statements in that they can have both pass and fail
procedural statements. However they differ from if/else statements in many ways including:

1. Assertions are ignored by synthesis.
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2. Assertion execution can be disabled and enabled during simulation.
3. Assertions are intended for monitoring a design rather than modeling a design.
4. Assertions execute severity level tasks if the assertion fails.

The syntax for an immediate assertion is:

assert (expression) [pass_statement;] [else fail statement;]

Note that the pass statement and the else fail statement are optional. If the
fail statement is left off, the default severity level of $error will execute.

For examples and details on using immediate assertions to trap logic X and Z problems, refer
to the paper “Being Assertive With Your X” [4], published in the proceedings of SNUG 2004.

2.2 Concurrent Assertions

Concurrent assertions use a clock or some other repetitive signal (referred to hereafter as the
property clock) to trigger the assertion evaluation. The primary difference between immediate
and concurrent assertions is that concurrent assertions evaluate conditions over time, whereas
immediate assertions test at the point in time when the assertion is called. The syntax difference
between the two types of assertions is very slight. The concurrent assertion directive includes
the key word property, whereas the immediate assertion does not. The syntax for a concurrent
assertion directive is:

assert property (property expr) [pass statement;] [else fail statement;]

The argument to assert property is a property expression which differs from the
argument of an immediate assertion, which is a simple Boolean expression. A property
expression is comprised of a clock specification and a sequence of Boolean expressions tested
over time. The expressions are evaluated on the clock edge specified. The sequence of Boolean
expressions can be spread over multiple clock cycles by using the ## cycle delay operator
between each expression.

The following code is an example of a completely self-contained concurrent assertion
directive.

example l:assert property
(@ (posedge clk) ( reqg ##1 grant ##10 !req ##1 !grant))
else Serror ("bus request failed");

Example 1 — Self Contained Concurrent Assertion Directive

The sequence in the example above is read as: “req should be true (high) immediately,
followed by grant being true (high) one clock cycle later. After ten more clock cycles, req should
be false (low), followed by grant being false (low) one clock cycle later.” For this assertion to
succeed, each expression must evaluate true at its specified time.
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2.2.1 Property and Sequence Blocks

The property expression of a concurrent assertion can be defined in a separate block of code,
between the keywords property and endproperty. This enables the same property expression to
be re-used by multiple concurrent assertions.

property bus req prop2;
@ (posedge clk) req ##1 grant ##10 !req ##1 !grant;
endproperty:bus req prop2

example 2:assert property (bus req prop2)
else Serror ("bus request failed");

Example 2 — Concurrent Assertion Calling a Property Block

A complex property expression can be broken into smaller sequence building blocks, specified
between sequence and endsequence. This is illustrated in the following example.

sequence start bus reqg;
req ##1 grant;
endsequence:start bus req

sequence end bus_ req;
'req ##1 !grant;
endsequence:end bus_req

property bus req prop3;
@ (posedge clk) start bus req ##10 end bus req;
endproperty:bus req prop3

example 3: assert property (bus req prop3);

Example 3 — Assertion, Property and Sequence Blocks Used Together

One difference between a property and a sequence is that property expressions contain an
implicit first-match whereas a sequence does not. This means that if a sequence has multiple
pass conditions, then each will occur. However, when that same sequence is placed in a property
expression, only the first pass condition of the sequence will be observed by the property, ending
that thread. Code Example 4 and Figure 1 below illustrate this concept. sequence bus reqg
in Figure 1 shows four passes per the signal relationship of req and grant whereas
property bus req prop4 will only see the first successful pass of sequence
bus req, causing that thread of the property to exit. Note that Figure 1 only shows the
pass/fail relationship for the sequence and the property for the specific thread starting at cycle 1.
The significance of this concept will be shown later in this paper as part of the discussion of
implication operators.
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sequence bus req;
req ##[1:5] grant; // equivalent to:

// req ##1 grant or
// req ##2 grant or
// req ##3 grant or
// req ##4 grant or
// reg ##5 grant

endsequence:bus_req

property bus req prop4;
@ (posedge clk) bus req;
endproperty:bus req prop4

example 4: assert property (bus req prop4);

Example 4 — Sequence with Multiple Endpoints True

01 2 3 4 5 6 7 8 9 10

req || 1
grant I |
bus_req ) 00

bus_req_prop4 [EI—

Figure 1 — Sequence and Property Pass/Fail for the Thread Starting at cycle 1 Inclusive
Example 4.

Note: For waveform figures, a filled square will denote the beginning of
a thread. Bubbles will denote thread endpoints. A clear bubble will de-
note a property or sequence failure and a filled bubble will denote a

roperty or sequence pass.
property q P Start of @ pass

thread O fail

2.2.2 Implication Operator

Most concurrent assertions are written so that the assertion “fires” each and every clock cycle,
throughout simulation. This allows the assertion to run in the background, concurrent with the
design functionality. Since the assertion fires every clock cycle, an assertion with a sequence
that takes twelve clock cycles to execute could possibly have twelve concurrent threads running
at the same time, with each thread starting on each subsequent clock cycle. In the bus
request/grant sequence examples above, req will be tested every clock cycle, starting a new
concurrent assertion thread. If req is true, the thread will continue and test for grant on the
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next clock cycle. If req is false, however, the assertion will fail at that point in time. This
would be a false failure, since the assertion is testing for a sequence that starts with req testing
true. Figure 2 below expands the pass/fail conditions for bus req prop4 showing all the
pass/fails for each thread, where Figure 1 only shows the results for the thread starting at cycle 1.

0 1 2 3 4 5 6 7 8 9 10
req |_I] 1

grant | |

bus_req_propa (D Hﬁ)\@ ORORORORORONO

Figure 2 — Sequence and Property Pass/Fail for all the Threads Between Cycle 0 and
Cycle 10 for Example 4.

In Figure 2, cycle 1 has neither a pass nor a fail because there are no threads ending at that
point in time. Cycle 3 has both a pass and a fail due to two separate threads ending at that cycle.
The thread that started at cycle 1 successfully completed at cycle 3 with a pass. The thread that
started at cycle 3 ended immediately with a fail, because req is false at that cycle.

The behavior of the assertion modeled in Example 4 and fully shown in Figure 2 is not really
practical due to an assertion failure occurring almost every cycle. To make assertions usable, the
assertion property needs to be modeled so that it will only test during expected event cycles and
be idle during don’t-care cycles. SystemVerilog properties make this possible by using the
implication operator.  Typically, assertions property expressions are specified with an

implication operator, either overlapping |-> or non-overlapping |=>. An implication operator

tells the property not to evaluate a property expression (the consequent) following the operator
unless the first condition before the operator (the antecedent) is true.

property example 5;
@ (posedge clk) antecedent sequence expression |[->
consequent property expression;
endproperty:example 5

Example 5 — Property Showing the Antecedent and Consequent of an Implication

In the request/grant code examples previously discussed, the designer will most likely only
want to test the request/grant sequence when req is true. For clock cycles where req is false,
the assertion is a don’t-care, and the request/grant sequence should not be evaluated. In assertion
terms, this condition is called a vacuous success. In the following example, the implication
operator prevents (guards) the consequent expression from testing when req is not true. The
assertion does not fail; it simply does not run and returns a vacuous success.
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property bus req prop6;
@ (posedge clk) req |-> ##[1:5] grant;
endproperty:bus req prop6

example 6: assert property (bus req prop6);

Example 6 — Range in Consequent — Automatic First-Match is Applied

0 1 2 3 4 5 6 7 8 9 10
req ]

grant |

bus_req_prop6 ‘ I:l:l——,

Figure 3 — Property Pass/Fail for all the Threads Between Cycle 0 and Cycle 10 for
Example 6. Vacuous Successes are not Noted.

Example 6 and Figure 3 show the request/grant code from Example 4, but with an implication
operator guarding against testing when req is low. The sequence from Example 4 is partitioned
into two parts: the antecedent or cause, and the consequent or effect. Note that the implication
operator is a property expression operator and cannot be used in a sequence.

The above example illustrates that the implicit first-match holds true for the consequent of an
implication that contains a sequence with a range. However, when the antecedent contains a
sequence with a range, each passing condition of the range starts a unique thread. This unique
thread in turn, starts a consequent evaluation. For the overall property expression to match, each
passing antecedent must have a matching consequent.

sequence bus req;
req ##[1:5] grant;
endsequence:bus req

property bus req prop7;
@ (posedge clk) bus req |-> ##[1:5] done;
endproperty:bus req prop7

example 7: assert property (bus req prop7);
Example 7 — Sequence with Multiple Endpoints used in Antecedent

The code from Example 7 is the basis for the wave diagrams in Figures 4 and 5 below.
bus_req in each figure indicates the pass/fail for the sequence used in the property antecedent.
Because this sequence has a range with multiple passing conditions, each passing condition must
have a passing consequent in order for the overall property expression to pass. In Figure 4,
signal done is true at cycle 5, which provides a pass condition for the sequence threads starting
at cycle 3 and 4. However sequence threads starting at cycle 5 and 6 do not have any
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corresponding passing consequent and therefore the property fails. The implicit property first-
match does not apply in this case, because all the passing conditions in the antecedent are part of
the singular property expression inclusive. Each passing condition from cycle 2 through cycle 6
must match to a passing consequent for the property to pass.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

req || 1
grant | |
done M1
bus_req ON N N N )

L
/A
N\

bus_req_prop7 L

Figure 4 — Sequence bus_req and Property bus_req_prop7 Pass/Fail Results for
Example 7

The signals in Figure 5 below follow the same scenario as the signals in Figure 4, with the
exception that a done occurs at cycle 9. This provides a passing condition for the sequence
threads that started at cycle 5 and 6.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

req I 1
grant | |
done 1 [T 1
bus_req ON N I N |
bus_req_prop7 I:E T

Figure 5 — Sequence bus_req and Property bus_req_prop7 Pass/Fail Results for
Example 7

When using a sequence that has the possibility of multiple passing conditions in an antecedent,
a much more practical model is to directly apply the £irst_match operator to the sequence.
Then, at most only one passing condition from the antecedent will be considered for the property
expression to pass. Example 8 and Figure 6 below show how the same inputs used in Figure 5
provide a passing property expression based on the first passing antecedent condition.
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sequence bus req;
req ##[1:5] grant;
endsequence:bus req

property bus req prop$8;
@ (posedge clk) first match(bus req) |-> ##[1:5] done;
endproperty:bus req prop8

example 8: assert property (bus req prop8);

Example 8 — Antecedent Sequence with £irst match Applied to Possible Multiple
Endpoints

0 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15

req |_J] 1
grant | l
done M1 71
first_match(bus_req) ON |
bus_req_prop8 [ﬁ r

Figure 6 — Sequence and Property Pass/Fail results for Example 8.

2.2.3 Range Repetition vs. Cycle Delay Range

In the examples discussed to this point, the sequences used a cycle delay range.
SystemVerilog assertions have other types of ranges that are associated with the repetition of
Boolean or sequential expressions. The point to note here is that as long as the range repetition
is not failing, the range rules previously discussed regarding antecedents apply to both range
repetition and a cycle delay range. For example, in the code below, as long as req is high
within the range, the sequence expression will look for a grant to occur. Following the
example are two figures that illustrate the consecutive range repetition.

sequence bus reqg;
regq[*1:5] ##1 grant;
endsequence:bus req

property bus req prop9;
@ (posedge clk) bus req |-> ##[1:2] done;
endproperty:bus req prop9

property bus req prop fm9;
@ (posedge clk) first match (bus req) |[-> ##[1:2] done;
endproperty:bus req prop fm9
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example 9: assert property (bus req prop9);
example fm9: assert property (bus req prop fm9);

Example 9 — Sequence with Multiple Endpoints in Antecedent

0O 1.2 3 4 5 6 7 8

req || I
grant TT1
done T11
bus_req " MONONO;
bus_req_prop9 | [1
L1
C1
(W
fbus_req_prop_fm9 []——’
L1
=

[‘]7

Figure 7 — Sequence and Property Pass/Fail Results for Example 9.

In Figure 7, bus req prop9 has a thread with a passing condition at cycle 3, but does not
show the thread passing until cycle 5. Remember, all passing conditions of the antecedent for a
multiple match sequence must each have a passing consequent. For bus req prop9, the
property expression had to wait until req went away to ensure that all the possible passing
antecedents could be tested. Thus the test for the first thread shows passing at cycle 5. The
remaining threads starting with req high at cycles 2, 3, and 4, never started an actual antecedent
pass.

The contrast between bus req prop9 andbus req prop fm9 should be obvious. The
first match operator will not wait for all the passing antecedents to show matching
consequents. Rather, first match makes each passing antecedent a separate and unique
thread. Each time an antecedent passes, it will test for a passing consequent, and then the
property expression is completed for that thread. This concept is easier to visualize, as shown in
Figure 8.
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req || |
grant I L]
done T11
bus_req " MON N0
bus_req_prop9 | [1 O
[l O
Ll O
L1

bus_req_prop_fm9 C

0
gl

W
\ WA

Figure 8 — Sequence and Property Pass/Fail Results for Example 9.

In Figure 8, bus req prop9 has a thread with a passing condition at cycle 3, and a failing
condition at cycle 6. Combined, this means that the property expression fails due to all the
passing antecedents not having passing consequents.

In contrast between bus req prop9 and bus_req prop fm9,the first_match will
isolate the first passing antecedent from the rest of the possible sequence matches in the
antecedent. Thus, once a passing condition occurred at cycle 3, the property expression passed.
Other threads are started at other cycles and they either fail or just end, as shown in the figure.

The concept that a range in the antecedent holds the property expression from completing is
the basis for the complex property discussed in the remainder of the paper. The complexity of
this property is magnified by the fact that the range is modeled as an unbounded range. As
shown in Figure 7 and Figure 8, this means that as long as the antecedent has a passing condition
or the possibility of a passing condition in the future, the property expression will never end.

3 Analysis of a Complex Property

The background of assertions and property expressions discussed in Section 2 is provided to
give a foundation for discussion of the property expression introduced in this section. Suppose a
designer wanted to monitor the number of cycles between a start pulse and an end pulse and then
verify some condition based on the number of cycles that occurred. For example, in a burst
memory write, an assertion could be used to ensure that the final memory address matches the
initial memory address plus the number of clocks (assuming a write occurred on each clock).
Another scenario might be to verify that the number of clocks between the start and end
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conditions is less than some maximum value. Such tests could be verified with a property using
chained implication operators as shown in Example 10.

‘define TRUE 1

property prop 10;
int v_ecnt;
@ (posedge clk) (Srose(start), v_cnt = 0) |->
("TRUE, v_cnt++) [*0:$] ##1 done |->
(v_cnt <= MAX);
endproperty:prop 10

example 10: assert property (prop 10);

Example 10 — Clock Cycle Counter and Max Count Comparator

The "TRUE is needed so that v_cnt would increment on every clock until done becomes
true. For the property expression to increment on each clock cycle, the consecutive range
repetition is needed. If a cycle delay range ##[0:S$] were used instead of the [*0:$],the
execution of v_cnt++ would occur only once.

Chaining implication operators adds a level of complexity to a property expression that
engineers often prefer to avoid. The complexity in Example 10 is then magnified because of the
unbounded repetition in what appears to be both a consequent and an antecedent.

In order to simplify the discussion for this paper, a simpler version of the property from
Example 10 will be used as shown in Example 11 below.

property prop 11;
@ (posedge clk) Srose(a) |-> b[*0:$] ##1 c |-> d;
endproperty:prop 11

example 11: assert property (prop 11);

Example 11 — Chained implication with an unbounded repetition range in an antecedent

The property expression in Example 11 can be labeled as shown in the following figure.

Srose (a) |-> b[*0:3] ##1 c |-> d;
\ \ a2 / c2
Al \ Ccl /

Figure 9 — Chained Implication Labels

Figure 9 shows the label for the first antecedent as Al, and everything to the right of the first
implication operator as consequent C1. The code between the two implication operators is
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labelled as a2 and is the antecedent to the second implication operator. Finally the consequent to
the right of the second implication operator is labelled c2. These labels are referred to frequently

throughout the remainder of this paper.

3.1 Simple Test to the Complex Property

Let us begin to look at this property by applying a simple test to it. To keep consistency
between code Example 10 and code Example 11, condition b will remain true through most of

the tests that follow.

0 1 2 3 4 5 6 7 8 9 10
a |J] 1
L]

Jan
N\

prop_11 [ﬁ

Figure 10 — Failing Test for Chained Implications.

Property expression prop 11 will fail when conditions ¢ and d are both not true on the same
cycle after the property expression has started. Figure 10 shows the property stopping at cycle 4
with a failure.

0O 1 2 3 4 5 6 7 8 9 10

a | _J] 1

b ]

c [ 11
d 11

prop_11 [ﬁ

Figure 11 — Passing Test? For Chained Implications.

Why does the property in Figure 11 not stop at cycle 4 with a pass? Is there not an implied
first-match applied to consequents? There is, but in this case, the consequent has not had a
complete passing match yet. Referring to the code diagram above and Figure 9, the condition in
a2 has the repetition range applied to condition b. For the property expression a2/c2 to pass, all
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passing conditions of a2 must have a matching passing condition of c2. With b repeating true,
the test will continue to look for matching c¢’s and d’s. As long as b is true and each occurrence
of c and d match, the a2/c2 expression does not end, and therefore does not pass.

0 1.2 3 4 5 6 7 8 9 10

a | _J| 1

b ]

c 11 [ 11
d 171 [ 11

prop_11 [‘]

Figure 12 — Neither Passing or Failing Test for Chained Implications.

In summary, as long as b is true, the property expression a2/c2 will test forever looking for the
condition of matching c’s and d’s.

3.2 Correct Way to Model the Complex Property Using first match

In order to model the code from code Example 11, the £irst match operator must be
applied to antecedent a2 (Figure 9). Then, only the first matching condition of a2 (Figure 9) will
be tested for a matching consequent, therefore limiting the unbounded range of b.

property prop 12;
int v_cnt;
@ (posedge clk) S$Srose(a) |-> first match(b[*0:5] ##1 c) |-> d;

endproperty:prop 12
example 12: assert property (prop 12);

Example 12 — Chained Implication Using £irst_match on an Unbounded Repetition
Range in Antecedent

If Chained Implications in Properties
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0 1. 2 3 4 5 6 7 8 9 10

a | I] 1

b ]

c [ 11
d 11

prop_12 [ﬁ T

Figure 13 — Real Passing Test for Chained Implications Using first _match

3.3 Alternate way of modeling the complex property using ##0

An alternate way of modelling a chained implication property expression is to replace the first

implication operator with the fusion operator. The fusion operator ##0 represents an
overlapping concatenation in sequences, where that the last sub-element of the first sequence and
the first sub-element of the second sequence hold true in the same cycle. This is another way of
stating that the second sequence starts at the same cycle in which the first sequence completes.
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property prop 1l3a;
int v_ecnt;
@ (posedge clk) Srose(a) ##0 (b[*0:$] ##1 c) |-> d;

endproperty:prop 13a

property prop 13b;
int v_ecnt;
@ (posedge clk) Srose(a) ##0 first match(b[*0:5] ##1 c) |-> d;

endproperty:prop 13b

example 13a: assert property (prop 13a);
example 13b: assert property (prop 13Db);

Example 13 — Replace First Implication With Fusion

0 1.2 3 4 5 6 7 8 9 10

a | J] 1

b ]

c [ 1
d 11

prop_13a ]
prop_13b ’
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Figure 14 — Fusion Operator Replacing the First Implication Operator

Replacing the first implication operator with the fusion operator may make the overall
property expression easier to understand, and it does not change the functionality. Essentially,
prop 13a and prop 13b are functionally equivalent to prop 11 and prop 12,
respectively.

3.4 The Second Implication Replaced by ##0

If an alternate way of modelling a chained implication property expression is to replace the
first implication operator with the fusion operator, then could the second implication operator is
replaced with a fusion operator?

property prop l4a;

int v_cnt;

@ (posedge clk) Srose(a) |-> b[*0:5] ##1 c ##0 d;
endproperty:prop l4a

property prop 14b;

int v_cnt;

@ (posedge clk) S$rose(a) |-> first match(b[*0:$5] ##1 c ##0 d);
endproperty:prop 14b

example 1l4a: assert property (prop 1l4a);
example 14b: assert property (prop 14Db);

Example 14 — Replace Second Implication with Fusion

0 1 2 3 4 5 6 7 8 9 10

a [_J] 1

b ]

c [ 11
d [11

prop_1l4a ]
prop_14b I

Figure 15 — Fusion Operator Replaces Second Implication Operator

On first glance, one could conclude that replacing the second implication operator with a
fusion operator gives the desired implementation with or without the first match operator.
However, there are corner conditions that do not match. For instance, a vacuous success for a2
(Figure 9) will return a vacuous success for the entire property expression containing the chained
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implications. These same conditions that caused a vacuous success for the chained model will
cause the fusion model to fail.

property prop 15a;

int v_ecnt;

@ (posedge clk) S$rose(a) |-> first _match(b[*0:$] ##1 c) [-> d;
endproperty:prop 15a

property prop 15b;

int v_ecnt;

@ (posedge clk) Srose(a) |-> b[*0:$] ##1 c ##0 d;
endproperty:prop 15b

example 15a: assert property (prop 15a);
example 15b: assert property (prop 15b);

Example 15 — Chained Implication with £irst match vs. Fusion Replacing the Second

ImplicatiEn
0 1 2 3 4 5 6 7 8 9 10
a | J] 1
b
c 11
d [
prop_15a | [] |Vaguouse Sucdess
prop_15b D

Figure 16 — Fusion Operator Replaces the Second Implication Operator

Property expression prop 15a has the chained implication operators and will return a
vacuous success at cycle 1 because antecedent a2 (Figure 9) is false. Property expression
prop 15b fails at cycle 1 because it uses the fusion operator instead of a second implication.

3.5 Two Properties

An approach used by designers to avoid chaining implications is to use multiple property
blocks, each with a single implication. For instance, a designer would replace the property
expression a |-> b |-> c with two separate property expressionsa |-> bandb |->
c, each in its own property block. These two separate properties do not represent the same
models as the single property expression. The separate property expression with b in the
antecedent will test every cycle, and is different from the chained property expression where b
will only be tested when a passes. If the designer does not want to not use implication chaining,
then the best approach is to replace the first implication operator with a fusion operator as
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discussed previously, a ##0 b |-> c. This way, if either a or b fails, then the expression
has a vacuous success. c is only tested if both a and b pass.

As a side note, if the non-overlapping implication operator is used, then the #4#1 should be
used instead of the ##0. Soa |=> b |=> cwouldbereplacedbya ##1 b |=> c.

3.6 Use an Upper Range Bound

A variation to the original property shown in code Examples 10 and 11 is to replace the
unbounded range with a fixed upper limit. Once the upper bound is reached, the a2/c2 (Figure 9)
property expression will return with a pass. The a2/c2 property express will still fail on the first
a2 pass/c2 fail, just like the unbounded model shown in Figure 10.

property prop lé6a;

int v_ecnt;

@ (posedge clk) Srose(a) |-> b[*0:8] ##1 c |-> d;
endproperty:prop l6a

property prop 1l6éb;

int v_ecnt;

@ (posedge clk) S$rose(a) |-> first match(b[*0:8] ##1 c) |-> d;
endproperty:prop_ 16b

example 1l6a: assert property (prop 1l6a);
example 16b: assert property (prop 16Db);

Example 16 — Chained Implication with Bounded Repetition Range in Antecedent

0 1 2 3 4 5 6 7 8 9 10
a | J] 1
b | ]
c 11
d M1
prop_16a ] O
prop_16b E ’

Figure 17 — Bounded Range With and Without a first match

Providing an upper bound can close the property expression giving it an ending time and
therefore a point to respond with a pass. Perhaps more interesting would be to use a variable for
the upper bound such as b[*0:upper]. Unfortunately, range values must be constants or
constant expressions. However, with some hand-waving and some fancy coding, a variable
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upper limit can still be applied. This variable could be passed into the property as an argument
or the variable could just be accessed globally. The following code example, prop 17c shows
one way to model a range with a variable upper limit

module foo;
bit a, d, clk;
int upper;

property prop 17a;

int v_ecnt;

@ (posedge clk) S$rose(a) |-> b[*0:$] ##1 c |-> d;
endproperty:prop l7a

property prop 17b;
int v_ecnt;
@ (posedge clk) Srose(a) |-> first match(b[*0:5] ##1 c) [-> d;

endproperty:prop 17b

property prop 1l7c;
int v_cnt;
@ (posedge clk) (Srose(a) && (upper != 0), v_cnt = 0) [->
((v_cnt < upper), v_cnt++) [*0:$] ##1 c [-> d;

endproperty:prop l7c

apl7a: assert property (prop 17a);
apl7b: assert property (prop 17b);
apl7c: assert property (prop 17c);

initial begin
upper = 8;

Example 17 — Variable Used to Set the Upper Range Bound

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a || 1
b |
c 11 M1 M1
d [11 [ ] [ ] [ 1
upper K8

prop_17a ]

prop_17b )

prop_17c ’
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Figure 18 — Variable Upper Range Bound

Figure 18 shows the contrast between the original property expression (prop 17a), the
property expression with the first match for the second antecedent (prop 17b), and
finally, the property expression with a variable max range (prop 17c). The bounded range
property is modeled in this example so that it will exit once the range has been reached.

One additional variation on using a variable upper bound is to only test when the upper bound
has been reached. The following code example provides this capability.

module foo;
bit a, ¢, d, clk;
int upper;

property prop 18;
int v_cnt;
@ (posedge clk) (Srose(a) && (upper != 0), v_cnt = 0) [->
((v_cnt < upper), v_cnt++) [*0:$] ##1
(v_cnt == upper) ##0 c |[-> d;
endproperty:prop 18

apl8: assert property (prop 18);

initial begin
upper = 8;

Example 18 — Variable Used to Set Upper Range Bound, Only Test When Upper Bound
is Reached

This property will test once for ¢ and d only when the upper count has been reached. Note
that the £irst_match operator is not used or needed for prop 17c or prop 18 because
once v_cnt value is greater then upper, the repetition ends.

3.7 Allow Only the First Antecedent to be Vacuous

When using chained implications, there may be times when a designer will want the entire
consequent of the first antecedent to be considered false if any of the chained antecedents are
vacuous. Consider the chained property expressiona |-> b |-> c. If a is false, then the
expression is vacuously true. If a is true and b is false, the expression is still vacuously true.
The following code example provides a method in which the final property expression will be
vacuously true solely due to a.

property prop 19a;
@ (posedge clk) a |-> b |[-> ¢ ;
endproperty:prop 19a
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property prop 19b;
@ (posedge clk) a |-> Db;
endproperty:prop_ 19b

property prop 19c;
@ (posedge clk) prop 19a and prop 19b;
endproperty:prop 19c

example 19c: assert property (prop 19c);

Example 19 — Chained Implication Where Only First Antecedent Can be Vacuously
True

In Example 19, prop 19a will return a vacuous success for either a or b as described in the
preceding paragraph. But, the result of property prop 19c will create a property
expression where only condition a could cause a vacuous success.

4 Conclusions

Using chained implications within a property expression for a concurrent assertion can be
complex and confusing. This complexity can be compounded if the second antecedent contains
an unbounded range. Trying to replace the single property containing chained implications with
multiple properties and assertions does not provide an equivalent model of the original chained
property expression.

This paper has shown the problems associated with unbounded ranges in a first-stage
consequent second-stage antecedent of a property containing chained implication operators. The
biggest issue is that an unbounded range in an antecedent will cause the property expression to
never end, thus never returning a pass condition. This is confusing if there are chained
implications and the unbounded range is in the consequent of the first implication and in the
antecedent of the second implication of the chaining. The consequent of implications have an
implied first-match, but that does not work as expected when chaining implications where
unbounded ranges are used. In actuality, the first-match does work. The problem is that an
unbounded range in an antecedent prevents the property expression from ever ending. If the
property never ends, there is never a first-match pass.

There are three ways in which a property with an unbounded range in the antecedent can end.
First, if the consequent ever fails, the property expression ends. Second, by applying the
first match operator to the antecedent containing the unbounded range, the implication
operator will be limited to only matching the one antecedent pass to one consequent match. And
third, applying an upper bound to the range in the antecedent provides an end point for the
property expression to return a pass.

The right solution is dependent upon the design and the intent of the property. Knowing how
unbounded ranges work in an antecedent will help in choosing the right solution.
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